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A B S T R A C T

Traumatic Brain Injury (TBI) can cause structural damage to the neural tissue and white matter connections in 
the brain, disrupting its functional coactivation patterns. Although there are a wealth of studies investigating 
TBI-related changes in the brain’s structural and functional connectomes, fewer studies have investigated TBI- 
related changes to the brain’s dynamic landscape. Network control theory is a framework that integrates 
structural connectomes and functional time-series to quantify brain dynamics. Using this approach, we analyzed 
longitudinal trajectories of brain dynamics from acute to chronic injury phases in two cohorts of individuals with 
mild and moderate to severe TBI, and compared them to non-brain-injured, age- and sex-matched control in
dividuals’ trajectories. Our analyses suggest individuals with mild TBI initially have brain activity dynamics 
similar to controls but then shift in the subacute and chronic stages of the injury (1 month and 12 months post- 
injury) to favor lower-order visual-dominant states compared to higher-order default mode dominant states. We 
further find that, compared to controls, individuals with mild TBI have overall decreased entropy and increased 
transition energy demand in the sub-acute and chronic stages that correlates with poorer attention performance. 
Finally, we found that the asymmetry in top-down to bottom-up transition energies increased in subacute and 
chronic stages of mild TBI, possibly indicating decreased efficacy of top-down inhibition. We replicate most 
findings with the moderate to severe TBI dataset, indicating their robustness, with the notable exception of 
finding the opposite correlation between global transition energy and mean reaction time (MRT). We attribute 
differences to the cohorts’ varied injury severity, with perhaps a stronger compensatory mechanism in moderate 
to severe TBI. Overall, our findings reveal shifting brain dynamics after mild to severe TBI that relate to 
behavioral measures of attention, shedding light on post-injury mechanisms of recovery.

1. Significance statement

Using Network Control Theory (NCT), we analyze longitudinal 
changes in brain dynamics over the acute to chronic stages of mild and 
moderate to severe TBI. NCT modeling provides a framework for un
derstanding how damage to structural white matter connections after 
TBI may alter patterns of functional brain activation, and, further, how 
these changes relate to impairment and recovery. We found that there 
was a shift in both the subacute and chronic stages of TBI to prefer lower- 
order (visual network) compared to higher-order (default mode 
network) states. In parallel, the overall amount of energy needed to 
transition between brain states was correlated with mean reaction time 

on the Attention Network Test (ANT). Finally, we found an increase in 
the amount of energy needed to complete top-down relative to bottom- 
up transitions, suggesting decreased efficacy of top-down inhibition. 
This work is the first to use NCT to analyze the longitudinal time course 
of brain dynamics from acute to chronic stages after TBI, and may point 
toward neurobiological mechanisms of injury and recovery.

2. Introduction

TBI causes approximately 2.5 million emergency department visits, 
282,000 hospitalizations, and 56,000 deaths each year (Faul and 
Coronado, 2015). TBI can affect cognition, motor function and 
emotional processes both in acute and chronic stages after injury 
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(Machamer et al., 2022; Silverberg et al., 2020). The search for bio
markers in TBI that would allow identification and targeted treatment of 
individuals predisposed to post-concussion syndrome has been largely 
inconclusive.TBI is also linked to heightened risk for neurodegenerative 
conditions such as Alzheimer’s Disease, Parkinson’s Disease, and 
chronic traumatic encephalopathy (VanItallie, 2019; Gardner and Yaffe, 
2015; Petraglia et al., 2014). Thus, there exists a great, unmet need for 
proper neurobiological understanding of injury and recovery mecha
nisms that would in turn provide better diagnostic/prognostic, medical 
clearance and rehabilitation protocols for TBI. Without protocols that 
are informed by the underlying neurobiological mechanisms, pop
ulations such as athletes and military members remain at risk for re
petitive TBI which only heighten the potential for long-term 
consequences (McAllister and McCrea, 2017; Dixon, 2017; Guskiewicz 
and Broglio, 2015). Finally, understanding mechanisms of injury and 
their longitudinal progression is paramount if we are to accurately 
predict recovery and develop effective therapeutics.

Diffuse axonal injury due to shearing effects in the white matter is a 
common diffusion MRI (dMRI)-based finding in TBI that has been 
associated with cognitive changes after injury. Analysis of the brain’s 
structural connectome (SC), or the network of anatomical white matter 
connections obtained from dMRI, provides a window into the spatial 
pattern of damage that takes place when head trauma occurs. Diffusion 
MRI-based changes in SC have been tested as potential TBI biomarkers 
from many studies (Imms et al., 2019; Yuan et al., 2017), and, impor
tantly, have been shown to be related to attention deficits (Cao et al., 
2021). Additionally, analysis of the brain’s functional connectome (FC), 
or the network representing synchrony of regional activation patterns, 
identified here via resting-state functional MRI (fMRI), is also informa
tive when examining post-TBI effects. Prior research has found that TBI 
patients have less segregated FCs compared to non-injured controls 
(Imms et al., 2019) along with decreased FC integrity within the default 
mode network (DMN) (Mayer et al., 2011). Trauma-induced changes in 
both the structural and functional connectome are correlated with poor 
symptomatic outcomes post-injury. While the brain’s FC is somewhat 
related to the brain’s SC, it is dynamic in its ability to reconfigure to fit 
cognitive demands (Cohen and D’Esposito, 2016; Park and Friston, 

2013; Cabral et al., 2017). For example, learning ability has been shown 
to depend on the dynamic flexibility of the brain’s functional activity 
patterns (Bassett et al., 2011). The relationship between SC and FC has 
been shown to be related to age, sex and cognition in healthy individuals 
(Gu et al., 2021), and decoupling of SC and FC after TBI and in Alz
heimer’s disease has been related to cognitive and motor deficits (Wang 
et al., 2021; Sun et al., 2014; McNamee et al., 2009). Finally, remodeling 
of both the structural and functional connectomes after injury is asso
ciated with recovery from mild TBI; specifically an increase in a measure 
of the distance between SC and FC was related to better improvement in 
cognition from 1 to 6 months after mild TBI (Kuceyeski et al., 2019).

Though static FC analysis has provided valuable insight into mech
anisms underlying TBI impairment and recovery, it fails to properly 
account for the dynamic nature of brain co-activation patterns, that is 
the synchronous activation of brain networks. The brain exhibits dy
namic alternation between commonly recurring co-activation states 
(Karahanoğlu and Van De Ville, 2015; Liu and Duyn, 2013). Cognitive 
control is a term that refers to the brain’s ability to modify its dynamics 
to fit task demands (Botvinick and Cohen, 2014; Power et al., 2013; S. 
Gu et al., 2015). Because the brain can be modeled as a network on 
which this cognitive control acts, NCT is a natural model for capturing 
and quantifying brain dynamics. NCT is a computational approach that 
models the brain as an interconnected network of nodes on which 
activation (measured via fMRI) can flow in a directed or undirected 
manner. NCT allows assessment of the brain’s controllability (or the ease 
with which the network can be driven along a given state trajectory) via 
assessment of transition energy (Gu et al., 2015). By mapping transition 
energies between states, NCT provides valuable information about the 
energetic landscape of brain activity in addition to biologically and 
cognitively relevant information about brain-state dynamics (Cornblath 
et al., 2020). Importantly, NCT enables the study of bidirectional in
formation flow, meaning that asymmetry may exist in the transition 
energy required to go from one state to another and back again. This 
characteristic has been leveraged to study asymmetries in top-down 
versus bottom-up transitions along the cortical hierarchy (Singleton 
et al., 2023b; Parkes et al., 2022). Temporal dynamics and landscape 
energetics have been shown to be related to cognition (Karahanoğlu and 
Van De Ville, 2015; Liu and Duyn 2013), and thus may enable better 
understanding of the brain’s pathological changes in TBI and how it 
recovers (Liu and Duyn, 2013; Chen et al., 2018).

In this study, we used NCT to quantify the changing brain dynamics 
in individuals with mild TBI from acute to chronic stages after injury, 
and compared them to non-injured individuals. Individuals with mild 
TBI were assessed with resting-state fMRI, dMRI, and behavioral metrics 
at acute, subacute and chronic stages (1 week, 1 month, 6 months, and 1 
year post-injury) allowing for longitudinal analysis of post-TBI changes 
throughout the recovery period. We additionally analyzed an indepen
dent dataset of individuals with moderate to severe TBI as a means of 
replicating findings and comparing and contrasting severity levels of the 
injury. We hypothesized that TBI would be associated with an overall 
steeper energetic landscape (more energy required for transitions be
tween brain states), particularly for top-down transitions, coinciding 
with a shift toward increased occupancy of lower order states and 
decreased occupancy of higher order states. Finally, we hypothesized 
that these pathological shifts in transition energy and state occupancy 
would correlate with cognitive performance as measured by the ANT.

3. Results

We first conducted analyses on the mild TBI dataset, and the main 
results we present are based on this analysis; we provide a replication on 
the independent dataset of individuals with moderate to severe TBI. We 
applied k-means clustering on 135 scans from 51 TBI subjects at four 
different timepoints (one week, one month, six months, 12 months post- 
injury; not every subject was scanned at each timepoint) and 39 scans 
from 39 control subjects to reveal recurring states of brain activity. We 

Nomenclature

General Abbreviations
AMI Adjusted Mutual Information
ANT Attention Network test
dMRI diffusion magnetic resonance imaging
fMRI functional magnetic resonance imaging
FC Functional Connectome/Connectivity
HC Healthy Control
MRT Mean Reaction Time
NCT Network Control Theory
ROI Region of Interest
RSN Resting State Network
SC Structural Connectome/Connectivity
TBI Traumatic Brain Injury
TR Repetition Time

Brain state abbreviations
DMN+/- Default Mode Network high/low amplitude activation
FPN+/- Frontoparietal Network high/low amplitude activation
SOM+/- Somatomotor Network high/low amplitude activation
SUB+/- Subcortical Network high/low amplitude activation
VATSOM+/- Ventral Attention/Somatomotor high/low 

amplitude activation
VIS+/- Visual Network high/low amplitude activation
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analyzed fractional occupancy of and probability of transitions between 
these states, comparing these metrics between control subjects and TBI 
subjects at each timepoint post-injury. Using NCT, we similarly analyzed 
state-to-state and global transition energy. Sample entropy was used to 
assess the complexity of global brain activity. Finally, we analyzed the 
relative energetic demand of top-down and bottom-up transitions post- 
injury and throughout the recovery window as compared to control 
subjects. Each of these analyses was repeated with a moderate to severe 
TBI dataset (42 TBI subjects over two timepoints, 17 control subjects).

3.1. Clustering of fMRI time series reveals four recurrent brain states

The four brain states shown in Fig. 1A consist of two pairs of anti
correlated states, one characterized by high and low amplitude activa
tion in the visual network (VIS+/-) and the other by high and low 
amplitude activation in the default mode network (DMN+/-). High 
amplitude activity refers to supra-mean activation whereas low ampli
tude activity refers to sub-mean activation. This dichotomy is consistent 
with the hierarchical organization observed in previous studies 
(Vidaurre et al., 2017; Gutierrez-Barragan et al., 2019; Chen et al., 
2018). These four states, overlapping generally with previous work, 
largely reflect that the task-free brain moves in a continuous way along a 
sensory-motor to association axis. Fig. 1B shows the similarity of the 
state centroid with each of the 9 functional networks. See methods for 
additional information on clustering and characterization of brain 
states.

3.2. Mild TBI causes a delayed-onset and persistent post-injury shift 
toward increased occupancy of lower-order states

Each individual’s state time series was characterized by state 

fractional occupancy (% of scan spent in each state), dwell time (how 
long the brain stayed in a state once transitioning to that state), and 
appearance rate (the number of times a state was transitioned into per 
minute). We found initially at 1 week post-injury that there were no 
differences in brain-state fractional occupancy of individuals with TBI 
compared to non-injured controls. However, at 1 month post-injury, a 
shift occurred where individuals with TBI significantly favored VIS+
and showed a trend of favoring VIS- (t = − 2.65, uncorrected p = 0.01, 
corrected p = 0.03 and t = − 2.02, uncorrected p = 0.05, corrected p =
0.07) while disfavoring DMN+ and showing a trend of disfavoring DMN- 
(t = 2.60, uncorrected p = 0.01, corrected p = 0.03 and t = 2.04, un
corrected p = 0.04, corrected p = 0.07) compared to controls (Fig. 2A). 
This deviation from the control group remained present and was sta
tistically significant after correction for all 4 states (corrected p < 0.05) 
at 6 months post-injury. Neither dwell times nor appearance rates for the 
four states showed statistically significant differences across the groups.

Transition probabilities between every pair of states, along with 
persistence probabilities that describe the likelihood of staying in a 
given state, were also compared between groups (Fig. 2B). Group dif
ferences in these probabilities aligned with the observations of shifts in 
fractional occupancy. Again, transition probabilities at 1 week were not 
different from non-injured controls, but at one month post-injury there 
were trends of higher persistence in VIS+ (t = − 2.65, uncorrected p =
0.01, corrected p = 0.08) and lower persistence in DMN+ (t = 2.49, 
uncorrected p = 0.01, corrected p = 0.08) for individuals with TBI. 
Additionally we observed trends of higher probability of transitions into 
both VIS states and lower probability of transitions into both DMN states 
for TBI patients compared to non-injured controls at all time points 
beyond 1 week. This effect was particularly prominent at 1 month and 6 
months post-injury and less prominent at 12 months post-injury, again 
demonstrating a delayed and persistent alteration of post-injury 

Fig. 1. Recurrent brain states. (A) The centroids of each of the four brain states, representing the average brain activity for that state. Yellow indicates high amplitude 
activity and purple indicates low amplitude activity. a.u. = arbitrary units B) Radial plots display the cosine similarity of each cluster centroid to the 7 Yeo functional 
networks, plus subcortex and cerebellum. States are labeled at the top by the most similar functional network and the type of activation (high amplitude is denoted 
with + and low amplitude is denoted with − ). VIS = visual; SOM = somatomotor; DAT = dorsal attention; VAT = ventral attention; LIM = limbic; FPN = fron
toparietal; DMN = default mode (Yeo et al., 2011); SUB; subcortex. CB = cerebellum. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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dynamics.

3.3. Mild TBI causes a trend of delayed decrease in global entropy and a 
trend of delayed increase in global transition energy that is related to worse 
mean reaction time

At 1 week post-injury, global transition energy (mean energy over all 
pairwise transitions between the four states) of mild TBI subjects was not 
different from that of healthy controls (HC) (t = 0.29, uncorrected p =
0.78). However, at one month post-injury we observed a trend in mild 
TBI subjects to higher global transition energy compared to non-injured 
controls (t = − 1.71, uncorrected p = 0.09, corrected p = 0.18). This 
trend was also present at 12 months post-injury (t = − 1.76, uncorrected 
p = 0.08, corrected p = 0.18) (Fig. 3A). We observed the inverse of this 
trend in global entropy, as mild TBI subjects showed a delayed trending 
decrease to a lower global entropy than HC at 1 month (t = 2.25, un
corrected p = 0.03, corrected p = 0.055) and 12 months post-injury (t =
2.39, uncorrected p = 0.02, corrected p = 0.055) that was not present at 
1 week-post-injury (Fig. 3B). We found that mean reaction time on the 
ANT was negatively correlated with global transition energy (Spear
man’s r = − 0.31; uncorrected p = 0.0007, corrected p = 0.002) 
(Fig. 3C), indicating worse performance was related to overall larger 
transition energies. This correlation persisted at a trend level when 

considering a partial correlation between global transition energy and 
mean reaction time with age and sex as covariates (Spearman’s r =
− 0.17, uncorrected p = 0.08, corrected p = 0.08).

3.4. Delayed transition energy increases in mild TBI show asymmetry with 
larger top-down vs. bottom-up increases

When investigating differences in transition energy between every 
pair of states (Fig. 4A), we again see a delayed-onset and persistent in
crease in transition energies in mild TBI compared to non-injured con
trols, particularly for transitions to VIS+/VIS- states. We organized the 
four states from higher to lower order such that the upper triangular part 
of the transition energy matrix represents top-down transitions and the 
lower triangular bottom-up transitions. If we subtract the lower from the 
upper triangular part of this matrix and average the result, we can obtain 
a measure of asymmetry in bottom-up vs top-down transition energy 
demand. When analyzing this asymmetry value (Fig. 4B), we see 
initially (1 week post-injury) no difference between mild TBI subjects 
and non-injured controls (t = 0.17, uncorrected p = 0.86). However, at 
1 month post-injury, individuals with mild TBI show a more asymmet
rical energy landscape wherein top-down transitions are more energet
ically demanding than bottom-up transitions (t = 2.76, uncorrected p =
0.007, corrected p = 0.02), a difference that was also significant at 12 

Fig. 2. Individuals with TBI show a delayed, persistent shift in brain state occupancy and dynamics, wherein they favored lower-order visual and dis
favored higher-order default mode states compared to non-injured controls. (A) Fractional occupancy rates for each of the four states, for non-injured controls 
(hc) and individuals with TBI at each post-injury time point. (B) T-statistic of HC vs TBI groups’ state-pair transition probabilities at each post-injury time point. 
*uncorrected p < 0.05 **corrected p < 0.05.
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months post-injury (t = 2.60, uncorrected p = 0.01, corrected p = 0.02).

3.5. Replication using k = 6 states

We re-ran our analyses of the mild TBI data with 6 states (instead of 
4) and found largely similar results. In short, there was a delayed-onset 
and persistent trend toward increased (some significant) fractional oc
cupancy of the VIS+/- state and decreased occupancy of the other 4 
states that had more contributions from the DMN. We found a trend- 
level increase in the ratio of top-down transition energy to bottom-up 
transition energy in mild TBI at 3 months and 12 months post-injury 
compared to non-injured controls. We also found a trend of increased 
energy for transitions into VIS- states (and at 12 months also VIS + state 
transitions). Finally, we saw a trend toward global transition energy 
being negatively correlated with mean reaction time. The details of this 
replication analysis can be found in the SI.

3.6. Linear mixed effect modeling

We completed additional investigation of the relationships between 
transition energy, entropy and MRT via an LME model. This failed to 
show any significant effect between transition energy and entropy as 
explanatory variables and MRT as a response variable. Model informa
tion and statistics are given in the SI.

3.7. Replication using an independent, moderate to severe TBI dataset

We re-ran all of the above analyses on an independent set of imaging 
and attention measures collected from 42 individuals with moderate to 
severe TBI at two scan time points: 4–6 months post-injury and 12 
months post-injury. Single scans from each of 17 non-injured controls 
were also compared.

An optimal of 4 states was found in the moderate to severe TBI 
dataset, and overall the centroids showed coactivation of a higher 
number of networks (SI Fig. 6) compared to the mild TBI states which 
were largely each dominated by activation of a singular network (Fig. 1). 
Moderate to severe TBI subjects did not significantly differ from HC in 
fractional occupancy of the 4 states, but the TBI subjects had non- 
significantly lower occupancy of the DMN + state (SI Fig. 7A). A trend 
of increase (t = − 2.46; uncorrected p = 0.03, corrected p = 0.22) was 
observed in dwell time of the state dominated by low amplitude acti
vation of the subcortical network (SUB-, the state which also had the 
second highest VIS activity of the four states) at 4–6 months post-injury 
compared to HC (SI Fig. 7C), and this was mirrored by a trend-level 
increase in persistence probability for SUB- at both 4–6 months (t =
− 2.49; uncorrected p = 0.02, corrected p = 0.13) and 12 months post- 
injury (t = − 2.20; uncorrected p = 0.04, corrected p = 0.13) 
compared to HC (SI Fig. 7B). A trend-level decrease (t = 2.53; uncor
rected p = 0.01, corrected p = 0.13) was observed in transition proba
bility from SUB- to VIS + in moderate to severe TBI subjects 4–6 months 
post-injury compared to HC (SI Fig. 7B).

Fig. 3. Individuals with mild TBI show a trend toward delayed increase in global transition energy (and a significant decrease in global entropy) in such a 
way that is correlated with mean reaction time. (A) Global transition energy for non-injured controls and individuals with mild TBI at each time point. (B) Global 
entropy for non-injured controls and individuals with TBI at each time point. (C) Spearman correlation between global transition energy and MRT for individuals 
with mild TBI at each timepoint. Points are colored by their collection time post-injury. p-value displayed is corrected. *uncorrected p < 0.05.
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Moderate to severe TBI subjects at 4–6 months post-injury did not 
show a significant difference from HC in global transition energy but 
showed a delayed shift at 12 months post-injury to a significantly 
increased global transition energy relative to HC (t = − 2.47, uncorrec
ted p = 0.02, corrected p = 0.04) (Fig. 5A). Global entropy of moderate 
to severe TBI subjects was not significantly different from that of HC 
(Fig. 5B), but the directionality observed was the same as in the mild TBI 
subjects (t = 1.40, uncorrected p = 0.18 at 12 months post-injury). The 
difference between bottom-up and top-down transition energy did not 
show change in moderate to severe TBI subjects compared to HC 
(Fig. 5C). The correlation between global transition energy and mean 
reaction time for moderate to severe TBI subjects was positive (Fig. 5D) 
both within the raw correlation (Spearman’s r = 0.25, uncorrected p =
0.06, corrected p = 0.06) and for the partial correlation with age and sex 
as covariates (Spearman’s r = 0.27, uncorrected p = 0.05, corrected p =
0.06). The delayed increase in transition energy of moderate to severe 
TBI subjects was not as transition-specific as it was for mild TBI (Fig. 5E).

4. Discussion

Here we use NCT to quantify the effect of mild and moderate to se
vere TBI on the brain’s dynamics landscape from acute to chronic post- 
injury stages. Most prominently, our results support the idea of a 
delayed shift in the dynamics of the brain in response to injury. In mild 
TBI, our analysis of fractional occupancy showed a shift at one month 
post-injury to increased occupancy of lower order visual dominant states 
and decreased occupancy of higher order default mode network domi
nated states. On the same time scale, we observed an increase in the 
energy requirement particularly for transitions into visual dominant 
states. Coinciding with these changes, we noted that the energy 
requirement for top-down transitions showed an increase relative to that 

of bottom-up transitions at one month post-injury. In addition to the 
evidence of a transition-specific delayed increase in transition energy, 
we found a delayed decrease in global entropy also at one month post- 
injury. We demonstrate the cognitive relevance of the energetic shift 
through the correlation between transition energy and mean reaction 
time on the ANT. Furthermore, we show the robustness of this finding 
through our analysis of independent moderate to severe TBI data which 
also displayed a delayed steepening of the energy landscape. The 
observed shifting dynamics supports the idea that functional reorgani
zation and structural damage following head trauma occurs over a 
period of continuous alteration in the months to years following injury 
and may be relevant to recovery.

We observed that transition energy increased predominantly for 
transitions into the VIS + and VIS- states (Fig. 4A). In our version of the 
transition energy calculations, energy depends on brain activity patterns 
as well as the strength of the white matter structural connections (Gu 
et al., 2015). Decreased structural connectivity (which occurs after TBI) 
would thus most likely result in increased energy as the diffusion process 
on which this metric depends would be slower. In moderate and severe 
TBI, Chiou et al. reported dynamic white matter change taking place 
beyond the initial recovery phase, as fractional anisotropy of the frontal 
and temporal regions showed an initial decrease followed by an ongoing 
increase in the 3 years following (Chiou et al., 2019). Meningher et al. 
noted a similar trend in mice, where global efficiency of the right 
hemisphere increased in the first week post-injury but decreased 
thereafter (Meningher et al., 2020). Our finding reflecting delayed-onset 
increases in transition energy additionally may relate to the concept of 
secondary structural connectivity damage described in prior publica
tions on the mechanism of TBI (Ng and Lee 2019) where longer term 
effects such as excitotoxicity (van Landeghem et al., 2006; Chamoun 
et al., 2010), neuroinflammation (Gentleman et al., 2004; Lotocki et al., 

Fig. 4. Individuals with TBI have decreased bottom-up versus top-down transition energy asymmetry. (A) T-statistics of the group differences (HC vs. in
dividuals with mild TBI) in transition energies between pairs of brain states at each time point. (B) Transition energy asymmetry (the average difference between 
bottom up transition energy minus top down transition energy) for each pair of states *uncorrected p < 0.05 **corrected p < 0.05.
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2009; Johnson et al., 2013), mitochondrial dysfunction (Xiong et al. 
1997), and axon degeneration (Povlishock 1992; Büki and Povlishock 
2006) have been implicated in delayed-onset injury-related damage.

The brain’s functional response to this structurally-defined change is 
notable in that significantly increased occupancy of VIS+ and VIS- and 
significantly decreased occupancy of DMN+ and DMN- coincide with 
the significant increase in transition energy required to move into the 
VIS states (Fig. 2, Fig. 4). The shift in occupancy is consistent with prior 
work showing increased functional connectivity of the visual network 
and reduced functional connectivity of the DMN in semi-acute mild TBI 
(Palacios et al., 2017). Our recent work demonstrated a link between 
fractional occupancy of states and functional connectivity (Olafson 
et al., 2022). Specifically, higher occupancy of states characterized by 
co-activation of two regions/networks results in a stronger FC between 
those two regions/networks. The default mode network has been pre
viously shown to be one of the most globally connected regions in the 
brain (Cole, Pathak, and Schneider 2010), and connectivity here has 
been demonstrated to be cognitively relevant (Shafer et al., 2021). 

Reduced structural and functional connectivity of the DMN have been 
associated with cognitive decline as part of regular aging in addition to 
pathology (Damoiseaux et al., 2008; Spreng and Turner 2013; Tomasi 
and Volkow 2012; Buckner et al., 2009; Moretto et al., 2022; Varangis 
et al., 2019; Zonneveld et al., 2019). The integrity hypothesis of default 
network function asserts that hypoactivation and hypoconnectivity of the 
DMN negatively impact self-generated cognitive action (Andrews- 
Hanna et al., 2014).

The observed shift in VIS occupancy may also relate to clinically- 
observable TBI symptoms. Primary vision deficits are commonly noted 
in TBI as are symptoms related to the integration of vestibular and visual 
input (Armstrong 2018; Hac and Gold 2022; Padula et al., 2017). Ab
normalities and long-term motor sequelae of eye-tracking, posture, 
photophobia, and balance are of concern (McNamee et al., 2009; Dever 
et al., 2022). Future work will associate occupancy of the VIS states with 
visual symptom severity.

In NCT, controllability can be defined as the ease at which a network 
can be driven along a given state trajectory and is inversely proportional 

Fig. 5. Independent, moderate to severe TBI dataset shows delayed global transition energy increase and correlation between energy and attention. (A) 
Global transition energy for HC and TBI patients at each time point. (B) Global entropy for HC and TBI patients at each time point. (C) Transition energy asymmetry 
by group given by the average difference between bottom up transition energy and top down transition energy for each set of pairwise transitions. (D) Spearman 
correlation between global transition energy and MRT for TBI patients at each timepoint. p-value displayed is corrected. (E) T-statistics of the group differences in 
transition energies between brain activity states in HC vs. TBI subjects at each time point *uncorrected p < 0.05 **corrected p < 0.05.
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to input energy. We utilize network controllability for information on 
the cognitive control, or task-adaptability provided by given brain dy
namics. Gu et al. noted that the DMN is a region of high average 
controllability and postulated that this demonstrates its role as a control 
point for the rest of the brain (Gu et al., 2015). Moreover, they describe 
the DMN as a ground state activated at rest that can transition the brain 
into task-based “excited” states where other networks (including VIS) 
are activated (Gu et al., 2015). In these terms, our results can be inter
preted to say that mild TBI diminishes the controllability of the brain by 
prompting an increased reliance on high energy excited states.

Energetic analyses of the brain may be relevant for considering 
cognitive deficits following injury. We observed that global transition 
energy was significantly negatively correlated with cognitive perfor
mance on the MRT task of the ANT (Fig. 3C). This trend supports the idea 
that, on a macroscopic level, higher energy requirements relate to poor 
cognitive performance. This follows on the idea from NCT that an input 
of transition energy for a given trajectory among state space is related to 
the effort required for such action (Gu et al., 2015). Our energetic an
alyses of TBI then support the idea that cognitive inefficiencies are 
created by an increase in the energetic demand and thus effort 
requirement for regular everyday functioning.

The increased energetic demand observed in the mild TBI patients 
studied here was found to be larger in top-down transitions (Fig. 4B). 
Top-down processing streams are associated with goal-driven tasks such 
as those measured with the ANT’s MRT metric. Furthermore, in
efficiencies in top down processing may be responsible for cognitive 
deficits previously noted in TBI, namely within the category of executive 
functioning. Top-down processing is crucial for emotion regulation, and 
a heightened energetic barrier for such processing may relate to the 
emotional disturbances and coping difficulties previously noted in TBI (J 
et al., 2015; Wang et al., 2022; Gorgoraptis et al., 2019). The top-down 
energy increase may also relate to more serious neuropsychiatric 
sequelae which have been noted following TBI (Howlett et al., 2022). 
Particularly, the rise in top-down transition energy may offer explana
tion for the development and/or exacerbation of mania-like poor im
pulse control which has been noted in the time following head trauma 
(Rao and Lyketsos, 2000). Alterations in top-down connections have 
also been pinpointed in previous work as a neural correlate with self- 
injurious behaviors (Auerbach et al., 2021). As this topic is explored 
further, it is probable that the association between energetic demand 
and TBI-related cognitive disruptions can be defined even further in 
terms of the mechanistic link.

Our analysis of moderate to severe TBI (Fig. 5) largely replicates the 
trends observed among the mild TBI subjects and may also serve as a 
starting point for future research on the differences between mild, 
moderate, and severe TBI. Notably, we again found evidence of a 
delayed increase in the energy requirement for transitions into visual 
dominant states, though it was first noted at 12 months post-injury 
whereas the same was noted in mild TBI at 1 month post-injury. It is 
important to note that the first scans were obtained from the moderate to 
severe TBI patients at 4–6 months post-injury, so neuroimaging data 
from the acute phase may provide further information on how this 
injury’s longitudinal progression compares to that of mild TBI. Though 
entropy of moderate to severe TBI subjects didn’t show a significant 
difference from control subjects, the overall trend was a decrease in this 
metric between 4–6 months and 12 months post-injury, again aligning to 
the findings in the mild TBI dataset. Interestingly, moderate to severe 
TBI subjects showed a positive correlation between global transition 
energy and MRT on the ANT, opposing the observation of a negative 
correlation in the mild TBI data. It is possible that this is related to 
increased functional compensation mechanisms reflecting the higher 
level of trauma experienced in this group. We did not observe a signif
icant shift in occupancy in tandem with the energy shift of moderate to 
severe TBI as we did in mild TBI (SI Fig. 7A and 9A) but we did see a non- 
significant decrease in DMN state occupancy and an increase in dwell 
time of a state with the second-highest VIS activity. It is possible that 

severity of trauma may moderate the relationship between dynamics 
and energetics, but it is also important to consider that these are two 
independent datasets with differences present in demographics, injury 
severity and MRI collection and processing.

5. Limitations and future work

Though the addition of the moderate to severe TBI dataset is valuable 
and informative in verifying the general trends observed in mild TBI, the 
differences between the datasets in patient makeup and post-injury in
tervals make explicit comparison of the results challenging. Addition
ally, although these two datasets utilized different data acquisition and 
preprocessing protocols, these differences are minimized by comparing 
within-subject longitudinal trends within each dataset. It may be bene
ficial to run further analyses on larger mild and moderate to severe TBI 
subjects using identical data collection patterns to assess the effect of 
injury severity on brain dynamics across the severity spectrum.

Though this study used data from 51 mild TBI subjects and there 
were 4 data collection timepoints following injury, only 135 total TBI 
data points were collected, meaning that not every subject had data 
collected at each time point. Likewise, only 17 out of the 42 moderate to 
severe TBI subjects had follow-up data. This presents a greater degree of 
uncertainty in making generalizations regarding longitudinal trends in 
TBI recovery. It also is worth noting here that no distortion correction 
was applied to the DWI data as no fieldmap data was available for this 
study. Follow-up work may benefit from sourcing data from a protocol 
where this correction can be applied.

In this work, we uncover several meaningful relationships between 
structure, function, and cognition. However, we must acknowledge the 
fact that the linear mixed effect modeling (see SI) fails to show signifi
cance in relating cognition to brain dynamics. With this, it is important 
to consider that changes in the brain throughout recovery may be 
inherently non-linear or non-stationary over time.

Finally, it is worth emphasizing that the transition energy in our 
analyses should be interpreted as the magnitude of the input that the 
structural connectome requires in order to obtain a desired state tran
sition (Gu et al., 2015; Singleton et al., 2022). Our energy analysis is not 
the metabolic energy that is commonly considered in biological con
texts, although recent work has suggested they may be related (He et al., 
2022).

6. Conclusion

Using principles of NCT, we jointly analyzed structural and func
tional imaging along with ANT to model the brain’s changes following 
mild and moderate to severe TBI. We present evidence for a delayed 
response mechanism where brain changes in dynamics are most prom
inent in the month following injury and persist somewhat at 12 months 
after injury. This delayed shift in dynamics includes a significant in
crease in transition energy to move between brain states, particularly for 
top-down transitions. Additionally, we show that the brain begins to 
prefer occupancy of bottom-up states (VIS+/VIS-) as opposed to top- 
down states (DMN+/DMN-) when this delayed shift in dynamics oc
curs. We combine these analyses with attention task performance and 
show an association between the increase in transition energy and worse 
attention performance. This work demonstrates that NCT is a useful tool 
with which we can study the evolution of brain dynamics after injury. 
Understanding post-injury longitudinal trajectories of brain dynamics is 
crucial if we aim to design therapies that may support recovery.

7. Methods

7.1. Cohort characteristics, data acquisition and MRI preprocessing (Mild 
TBI)

Neuropsychological test scores and MRI data were collected from 51 
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subjects (29.6 ± 8.6 years of age, 35 males) that incurred mild TBI. Data 
was collected at 1 week, 1 month, 6 months, and 12 months post-injury. 
8 of the mild TBI subjects had complete datasets with measurements at 
all 4 timepoints, and the others were analyzed for between 1 and 3 
timepoints. Mild TBI was defined as having Glasgow Coma Scale of 
13–15 at injury, loss of consciousness less than 30 min, and post- 
traumatic amnesia less than 24 hrs. MRI data was collected from 39 
HC subjects for comparison, but these subjects did not undergo neuro
psychological tests. A 3 T GE Sigma EXCITE scanner with an eight 
channel phased array head coil was used to collect the MRI data which 
included structural scans (FSPGR T1, 1 x 1 x 1 mm3 voxels), eyes-closed 
resting state fMRI (7 min, 3.4 x 3.4 x 4.0 mm3, TR/TE = 2000/28 ms), 
and 55-direction high angular resolution dMRI (b = 1000 s/mm2, 7 
volumes with b = 0, 1.8 x 1.8 x 1.8 mm3 voxels, TR/TE = 14000/63 ms). 
Neuropsychological metrics consisted of nine ANTsubscores and sixteen 
California Verbal Learning Test-II (CVLT-II) subscores (Fan et al., 2002; 
Jacobs and Donders, 2007). These tests were based on recall and 
recognition ability and were used as measures of cognitive performance 
to be analyzed throughout recovery.

Gray and white matter tissue were separately grouped and gray 
matter was further separated into 86 automated regions of interest using 
the semiautomated FreeSurfer software (Fischl, 2012). Cortical and 
subcortical parcellations were used in the construction of the functional 
and structural connectivity network, with details outlined in our pre
vious publication (Kuceyeski et al., 2019). In short, fMRI was processed 
using the CONN toolbox (Nieto-Castanon and Whitfield-Gabrieli, 2021) 
to perform motion correction (simultaneous realignment and unwarp
ing, via non-linear registration to anatomical scan), slice-timing 
correction, coregistration/normalization to 3 mm MNI space, followed 
by outlier removal. Regional time series were averages of the voxel-wise 
time series. Diffusion MRIs were linearly motion corrected using a 
modified version of FSL’s eddy_correct and the linear correction applied 
to the gradient directions. The dMRIs were then corrected for eddy 
currents using FSL’s eddy_correct. Orientation distribution functions 
were constructed using FSL’s BEDPOSTX (two fiber orientations), gray/ 
white matter masks linearly transformed to dMRI space and streamline 
tractography performed from each voxel in the gray matter/white 
matter interface. Pairwise region of interest (ROI) streamline matrices 
were extracted and normalized by the total volume of each pair of ROIs.

Subject retention across time
Timepoint 1 2 3 4

1 X 27/30 19/30 14/30
2 27/45 X 34/45 25/45
3 19/34 34/34 X 21/34
4 14/26 25/26 21/26 X

*12 subjects had scans at all 4 timepoints.

In table, row 1 tells how many of the subjects from timepoint 1 also had scans taken at 
each of the other timepoints (denominator is the same across each row). Row 2 tells 
how many of the subjects with scans at timepoint 2 also had scan taken at each of the 
other timepoints, etc., etc.

**11 fMRI scans did not have diffusion MRI: 6T2, 4 HC, 1T1.

7.2. Cohort characteristics, data acquisition and MRI preprocessing 
(moderate to severe TBI)

Neuropsychological test scores and MRI data were collected from 42 
subjects that incurred TBI. Data was collected at 6 months and 12 
months post-injury. 17 of the TBI subjects had complete datasets with 
measurements at both timepoints, and the others were analyzed only at 
6 months post-injury. TBI subjects in this cohort were required to have 
sustained a complicated mild (Glasgow Coma Scale score of 13–15 with 
evidence of intracranial lesion as verified on acute neuroimaging) or 
moderate-severe TBI (Glasgow Coma Scale score ≤ 12) within the last 6 

months. MRI data was collected from 15 HC subjects for comparison.
All participants were required to meet the following criteria: (i) 18 

years of age or above; (ii) English-speaking; (iii) capable of providing 
informed consent or a proxy/authorized agent available to provide 
informed consent; (iv) physically healthy and able to safely undergo PET 
imaging; (v) not currently taking any psychoactive or benzodiazepine 
drugs; (vi) not currently taking any medication for attention-deficit/ 
hyperactivity disorder; (vii) no history of schizophrenia, drug, or 
alcohol abuse; (viii) no history of epilepsy, stroke, dementia, or serious 
medical illness by self-report; and (iv) not pregnant (for female 
participants).

MRI data was collected on a 3T Siemens Prisma scanner with a 32- 
channel head coil, using a protocol based on the HCP Lifespan study 
(Harms et al., 2018). Data include 0.8 mm isotropic T1w and T2w 
anatomical scans, 11 min of eyes-open rsfMRI divided into two scans 
with opposing A≫P and P≫A phase-encoding (2 mm isotropic, TR/TE 
= 800/37 ms, multi-band factor 8, 420 volumes per scan), and multi- 
shell diffusion data (1.5 mm isotropic, TR/TE = 3230/39.2 ms, multi- 
band factor 4, 92 directions/shell at b = 1500/3000, b = 0 every 16 
volumes, acquired in both A≫P and P≫A). A matching pair of spin echo 
field maps with opposing phase encoding direction was collected for 
each resting state scan.

MRI data was preprocessed using the HCP minimal processing 
pipeline (Glasser et al., 2013). Preprocessed fMRI was further processed 
using custom scripts to identify and exclude outlier timepoints (motion 
derivative threshold 0.9 mm, global signal threshold 5σ) and nuisance 
regressors related to motion and CSF and white-matter signals (24 mo
tion time series (Power et al., 2014) and 10 eigenvectors derived from 
eroded white matter and CSF masks (Behzadi et al., 2007)), temporally 
filter the final result (high-pass filter cutoff 0.008 Hz, using DCT pro
jection), and to extract average ROI time series. Outlier timepoints were 
excluded from nuisance regression and temporal filtering. For diffusion 
data, MRtrix3 was used to perform bias correction, constrained spherical 
deconvolution, and whole-brain deterministic tractography (Tournier 
et al., 2012). Pairwise ROI streamline matrices were extracted and 
normalized by the total volume of each pair of ROIs.

7.3. Brain states

Brain states were extracted, characterized, and analyzed as in 
Cornblath et al. (Cornblath et al., 2020). All subjects’ fMRI time series 
(control and TBI together) were concatenated in time, producing a 
29,754 X 86 matrix ((TR x scans)X ROI), and k-means clustering was 
used to identify recurrent activation patterns, or brain states. Following 
clustering, brain states were z-scored across regions, resulting in vectors 
containing both positive and negative values that reflect relative acti
vation magnitudes. This treatment of brain states is consistent with 
standard practices in prior NCT applications (Cornblath et al., 2020). 
Using Pearson correlation as a distance metric, the clustering solution 
with the best separation of data was chosen among 50 repetitions. For 
further assessment of stability and reliability of the clustering solution, 
this process was independently repeated 10 times, and the adjusted 
mutual information (AMI) was compared between each of the 10 par
titions. The partition with the greatest total AMI with the other nine 
partitions was selected for analysis. We plotted the variance explained 
for the range of k = 2 clusters to k = 14 clusters and observed an “elbow” 
in the plot at k = 4–6 (Fig. S1). After k = 6, the amount of variance 
explained by adding an additional cluster was negligible. We report the 
results for k = 4 in the main text and the results for k = 6 in the 
supplement.

7.4. Characterization of brain states

The centroid of each of the four clusters was characterized based on 
cosine similarity to the seven resting state networks (RSNs) presented by 
Yeo et al (Yeo et al., 2011). Considering that the mean signal was 
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removed from each scan’s regional time series, positive values in the 
centroid reflect high amplitude activation (above the mean) while 
negative values in the centroid reflect low amplitude activation (below 
the mean). We calculated the Spearman correlation values between all 
centroids to quantify the relationship between them.

7.5. Temporal dynamics

The temporal dynamics of the earlier determined brain states were 
used to describe changes induced by TBI. For each state, the fractional 
occupancy was determined by the number of TRs (repetition times) 
assigned to the cluster divided by the total number of TRs. Dwell time 
was calculated as the mean amount of time spent per visit to each state. 
Appearance rate was calculated by finding the average amount of times 
each state was transitioned into per minute. Transition probabilities 
were also obtained for each state to state transition by calculating the 
probability that any given state i was followed by state j. Unpaired t-tests 
for differences between means were performed to assess group differ
ences in these metrics between the five groups (controls and four TBI 
timepoints).

7.6. Ranking brain states: top-down vs. bottom-up

The dot product was taken of the absolute value of each centroid 
vector with a functional connectivity gradient vector indicating each of 
the 86 regions’ positions in the top-down vs. bottom-up processing hi
erarchy (Margulies et al., 2016). This allowed the centroids to be ranked 
in order of most top-down to least top-down (bottom-up). This ranking 
was then utilized to compare transition energies for top-down vs 
bottom-up transitions.

7.7. Transition energy calculations

We utilized individual-level brain states from each scan to quantify 
state transition energies using NCT. Transition energy here is defined as 
the minimum energy input into a network—here, the structural con
nectome— required to move from one state to another (Karrer et al., 
2020). We modeled neural dynamics using a linear, time-invariant 
model: 

dx
dt

= Ax(t)+Bu(t), (1) 

where A is an individual’s NxN structural connectivity matrix 
(normalized by its maximum eigenvalue plus 1 and subtracted by the 
identity matrix to create a continuous system) (Karrer et al., 2020), x(t) 
is the regional activation at time t, B is the NxN matrix of control points, 
and u(t) is the external input into the system. Here, N is the number of 
regions in our parcellation, i.e. 86. We selected T = 1 for the time- 
horizon and the identity matrix for B, as in previous studies (Karrer 
et al., 2020; Tozlu et al., 2023; Singleton et al., 2022; Singleton et al., 
2023b; Luppi et al., 2023; Parkes et al., 2022; 2023; Singleton et al., 
2023a). Integrating u(t) over the time-horizon for a given transition 
yields the total amount of input that was injected into each region to 
complete the transition between states, and summing that value over all 
regions then gives the total amount of energy necessary to be injected 
over the whole brain. This summation represents transition energy. We 
calculated the pairwise transition energies between each of the four 
brain-states for each individual using this framework. In cases where the 
initial and target state were the same (Fig. 4, diagonal), transition en
ergy was the energy required to maintain that state (i.e. resist the natural 
diffusion of activity through the SC). Average transition energy for each 
individual was calculated as the mean over all transitions. Transition 
energies were compared for top down transitions vs. bottom-up transi
tions using the ordering method previously described. Unpaired t tests 
for differences between means were again performed to assess group 

differences in these metrics between the five groups (controls and four 
TBI timepoints). Spearman correlations were calculated for the rela
tionship between transition energy into a given state and fractional 
occupancy of that same state.

7.8. Entropy calculations

Sample entropy is defined as the negative logarithm of the condi
tional probability that two similar sequences of m points in a time-series 
remain similar at the next point m + 1, counting over all other vectors 
except itself (Delgado-Bonal and Marshak 2019). Two sequences are 
considered similar if they have a Euclidean distance less than r. Here we 
used m = 3 and r = 0.2•σ, where σ is the standard deviation of the time- 
series, based on prior work (Tozlu et al., 2023; Tomčala 2020; Z. Wang 
et al., 2014). Sample entropy was calculated for each of the 86 regional 
time-series of each subject and the global entropy was the average of 
these values. This process was repeated for each timepoint, allowing for 
longitudinal entropy analysis via unpaired t-tests. Spearman correla
tions were calculated for the relationship between entropy and transi
tion energy.

7.9. Correlations with cognition

ANT MRT values were adjusted for age and standardized such that 
numbers greater than 0 indicate a faster reaction time than average 
healthy controls and numbers below 0 indicate a slower reaction time 
than average healthy controls. Spearman correlations were calculated 
between global transition energy and MRT using TBI patient data only.

7.10. Multiple comparisons

P-values were corrected for multiple comparisons using the 
Benjamini-Hochberg method (Benjamini and Hochberg, 1995) where 
indicated.

7.11. Code availability

Code for clustering time-series, analyzing brain-state dynamics, and 
calculating transition energy are available at https://github. 
com/ejcorn/brain_states. Code for other statistical analyses and figures 
can be made available upon request.
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