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ABSTRACT
BACKGROUND: Heavy alcohol use and its associated conditions, such as alcohol use disorder, impact millions of
individuals worldwide. While our understanding of the neurobiological correlates of alcohol use has evolved sub-
stantially, we still lack models that incorporate whole-brain neuroanatomical, functional, and pharmacological
information under one framework.
METHODS: Here, we utilized diffusion and functional magnetic resonance imaging to investigate alterations to brain
dynamics in 130 individuals with a high amount of current alcohol use. We compared these alcohol-using individuals
to 308 individuals with minimal use of any substances.
RESULTS: We found that individuals with heavy alcohol use had less dynamic and complex brain activity, and
through leveraging network control theory, had increased control energy to complete transitions between activation
states. Furthermore, using separately acquired positron emission tomography data, we deployed an in silico eval-
uation demonstrating that decreased D2 receptor levels, as found previously in individuals with alcohol use disorder,
may relate to our observed findings.
CONCLUSIONS: This work demonstrates that whole-brain, multimodal imaging information can be combined under a
network control framework to identify and evaluate neurobiological correlates and mechanisms of heavy alcohol use.

https://doi.org/10.1016/j.bpsc.2024.05.006
Alcohol use disorder (AUD) is a long-term and recurring
neurological condition that can continue unabated despite
significant adverse effects on the person, their family, and the
broader community. However, the root neurobiological causes
of AUD remain undefined, effective treatment methods are
limited, and relapse rates are approximately 60% (1). Signifi-
cantly, it has been observed that only a fraction of individuals
who regularly consume addictive substances eventually
develop a substance use disorder (SUD). This emphasizes the
urgent need to uncover biological elements that predispose a
person to develop SUDs and to improve prevention and
treatment paradigms.

Individuals with an SUD may be vulnerable because of ge-
netics, developmental differences, hormones, life experiences,
or environmental and/or adverse social exposures (2). The
brain’s reward circuitry, stimulated by most addictive drugs,
depends greatly on dopamine signaling, particularly in the
ventral tegmental area and dorsal striatum, including the nu-
cleus accumbens. Chronic exposure to dopamine-stimulating
drugs, such as alcohol, can trigger glutamatergic-mediated
changes in the striato-thalamo-cortical (specifically orbito-
frontal and anterior cingulate cortex [ACC]) and limbic (amyg-
dala and hippocampus) pathways that can lead to a transition
from goal-directed to habitual control over drug-seeking
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behaviors in certain individuals (3). Several positron emission
tomography (PET) studies have revealed that people with an
SUD of alcohol (4), cocaine (5), heroin (6), and methamphet-
amine (7) have reduced concentrations of dopamine receptors.
One hypothesis is that individuals with lower dopamine re-
ceptor levels, due to genetics and/or because of their envi-
ronment or life experiences, obtain less-than-usual dopamine-
mediated pleasure from everyday life and may therefore be
susceptible to habitual seeking of drug-induced increases in
dopamine.

Neuroimaging studies have begun to reveal differences in
brain structure and function in individuals with SUDs. A recent
meta-analysis revealed brain structures involved across levels
of use (SUD vs. occasional vs. long-term) and substance type,
including the thalamus, insula, inferior frontal gyrus, and su-
perior temporal gyrus (8). Further neuroimaging evidence
points to a possible reduction in top-down inhibitory control of
bottom-up signaling (9), which may support the proposed
hypothesis of SUD as a disease of control dynamics (10). In
susceptible individuals, certain stimuli (bottom-up signals) may
activate strong urges that would be suppressed in others by
top-down inhibition but result in compulsive behavior in sus-
ceptible individuals (11). Together, the current evidence points
toward neurobiological mechanisms of SUDs, which likely
gical Psychiatry. Published by Elsevier Inc. All rights are reserved,
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involve differences in receptor concentration/function, brain
activity patterns, and anatomy [gray and white matter (12)].
However, a unifying computational model integrating multi-
modal observations into a single framework has not been
proposed, which has undoubtedly hampered our ability to
understand the neurobiological mechanisms of SUDs, thereby
dampening our ability to develop effective therapies to reduce
their burden.

Here, we turned our attention toward understanding heavy
alcohol use (HAU), combining whole-brain structural, func-
tional, and pharmacological information from diffusion mag-
netic resonance imaging (dMRI), functional MRI (fMRI), and
PET to investigate brain dynamics in individuals from the Hu-
man Connectome Project’s young adult dataset (13). Using the
brain’s structural (white matter) network as a guide, network
control theory (NCT) (14) enables mapping of the brain’s dy-
namic state space by quantifying the energy required to tran-
sition between functional states. This type of energy can be
referred to as control or transition energy (TE). Recent work has
utilized these tools to demonstrate that although the resting
human brain has a spontaneous tendency to prefer certain
brain state transitions over others, cognitive demands can
overcome this tendency in a way that is associated with age
and cognitive performance (15–17). NCT has proven useful in
describing brain dynamics in various cognitive states (15,18),
neuropsychiatric/degenerative conditions (16,17,19–21), and
development (22,23). Importantly, NCT has also captured
changes in brain dynamics due to neuromodulation (17,24–26).
One such fMRI study showed increased TE under the D2

antagonist amulsipride compared with placebo (17). This study
also showed that TE was negatively correlated with genetically
predicted D2 receptor concentration, indicating that those
likely to have lower concentration of D2 receptors also had
higher TE. This evidence supports the use of NCT to reveal
shifts in the brain’s energetic landscape in response to re-
ceptor modulation/concentration and, importantly, the hy-
pothesis that decreased dopamine receptor function/
concentration, as is known to occur in HAU, results in
increased energetic demand to travel through the brain’s state
space (i.e., increased TE). Thus, we propose using NCT as a
unifying computational modeling approach that incorporates
the effect of white matter and/or dopamine receptor differ-
ences in individuals with HAU on their brain activity dynamics
with the goal of understanding neurobiological mechanisms of
HAU at the whole-brain level.

We utilized a network control framework to improve our
understanding of how brain structure and function is altered in
HAU. Using functional brain states from resting-state fMRI and
the brain’s structural connectivity (SC) from dMRI, we
compared TE in individuals with current HAU to that of in-
dividuals with minimal use of substances. We further related
these shifts in energetic demands to the complexity of brain
activity, a well-known biomarker of information processing and
brain health (27). Then, to investigate changes in top-down and
bottom-up signaling, we investigated how white matter dif-
ferences in HAU may alter signal propagation between
subcortical structures and the frontoparietal network (FPN).
Finally, we incorporated D2 receptor densities from PET to
build a modeling framework that simulates dysfunction of the
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dopamine system and provides evidence for a mechanistic
explanation for our findings.

METHODS AND MATERIALS

Participants

We used data from participants of the Human Connectome
Project—Young Adult S1200 (13) release. See the Supplemental
Methods for full details on participants and selection criteria for
each group. Individuals with current HAU were assigned to the
HAU group (n = 130; 30 female; mean age = 28 years, SD = 3.7).
Non-SUD individuals (n = 308; 213 female; mean age = 29 years,
SD = 3.8) were individuals who did not have a diagnosis of any
SUD, were not binge drinkers, and reported having,2 drinks per
day on average for the past year.

Transition Probability and State Transitions

Using the partition of brain states from k-means clustering
(see the Supplemental Methods for details), we calculated
transition probabilities for each individual as the probability
that any given state i was followed by state j. The number of
state transitions for each individual was calculated as the
number of times that any given state i was followed in the next
volume by any state j where j s i. These metrics were calcu-
lated separately for each fMRI scan and then averaged across
scans prior to comparison.

Transition Energy

TE is defined here as the minimum energy input into a
network—here, the structural connectome—that is required to
move from one state to another (14,28,29) (see the
Supplemental Methods for dMRI acquisition and processing
and structural network estimation). To model neural dynamics,
we used a linear time-invariant model: x_(t) = Ax(t) 1 Bu(t),
where A is an individual’s N 3 N SC matrix (normalized by its
maximum eigenvalue plus 1 and subtracted by the identity
matrix to create a continuous system) (29), x(t) is the regional
activation at time t, B is the N 3 N matrix of control points, and
u(t) is the external input into the system. Here, N is the number
of regions in our parcellation. We selected T = 1 for the time
horizon, as in previous studies (15,20,22,24,25,28). See the
Supplemental Methods for further elaboration on TE, state
definitions, and the dopamine dysfunction paradigm.

Metastate Complexity

We calculated the metastate complexity (MSC) of each in-
dividual’s k-means partition as previously described (24,30).

In short, each individual’s partition was binarized based on
assignment to either of the pairs of anticorrelated states (visual
network [VIS]2/1 or default mode network [DMN]2/1) to
construct the metastate time series. We then used the Lempel-
Ziv algorithm (LZ76) (31) to quantify the compressability of, or
information contained in, each binary metastate time series.
This metric was calculated individually for each fMRI scan and
then averaged across scans prior to comparison. MSC cap-
tures information above and beyond the absolute number of
state transitions and is sensitive to the precise sequence of
brain states.
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Statistical Comparisons

All between-group comparisons involving fMRI data were
made using analyses of variance (ANOVAs) controlling for age,
sex, age-by-sex interaction, and fMRI in-scanner motion
(average framewise displacement). Between-group compari-
sons investigating SC differences alone were made using the
same ANOVA design as above sans fMRI in-scanner motion.
Full tables for ANOVA results are provided in the Supplement.
Correlations between average TE and the number of state
transitions and MSC were calculated using Spearman’s rank-
correlation, and p values were obtained from permutation
testing. The comparison between FPN and subcortex TE and
subcortex and FPN TE was performed using both groups of
participants and a paired t test. Finally, the comparisons of
average TE obtained using the true D2 receptor map as a
control strategy versus deplete maps were made using paired t
tests. All p values were corrected for multiple comparisons
using the Benjamini-Hochberg method where indicated (false
discovery rate–corrected p [pFDR]).

RESULTS

Commonly Recurring Patterns of Brain Activity

Data-driven clustering of all subjects’ regional blood oxygen
level–dependent fMRI time series revealed 4 commonly
recurring patterns of brain activity (Figure 1) that we oper-
ationalize as brain states herein. The identified brain states
consisted of 2 pairs of anticorrelated activity patterns (i.e.,
Figure 1. Four commonly recurring patterns of brain activity (brain states) were
(A) Cosine similarity with canonical resting-state networks (32) was calculated
separately for each brain state. Each brain state is labeled by its maximal cosine s
each brain state plotted on the cortical surface. a.u., arbitrary units; DAT, dorsal a
LIM, limbic network; SOM, somatomotor network; SUB, subcortical structures; V
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metastates), the first dominated by low- and high-amplitude
activity in the visual network (VIS2/1), and the second by
low- and high-amplitude activity in the default mode network
(DMN2/1).

Less Dynamic Brain Activity Paired With Larger TE
in HAU

We calculated pairwise transition probabilities between each
of the 4 brain states (Figure 2A). In groupwise comparisons of
these transition probabilities, only trends existed. Individuals
with HAU showed a trend for a lower likelihood of transitioning
out of the DMN2 state into the VIS2 (F432 = 4.92, uncorrected
p = .0389, pFDR = .210) and VIS1 (F432 = 4.27, uncorrected
p = .0384, pFDR = .210) states and a higher likelihood of staying
in the DMN2 state (F432 = 7.3, uncorrected p = .007, pFDR =
.116) (Figure 2B), although none of these effects were signifi-
cant after correction for multiple comparisons. In general, in-
dividuals with HAU had fewer state transitions on average than
non-SUD individuals (F432 = 7.24, pFDR = .0111) (Figure 2E).
Applying NCT to participants’ structural connectomes, we also
calculated the minimum control energy, or TE, between each
of the 4 brain states for each individual (Figure 2C). Group-
average transition probabilities and TE were inversely
correlated (r = 20.81, p = .0001) (Figure S1), indicating that
transitions that required more energy were less probable. In-
dividuals with HAU showed higher TE for nearly every transi-
tion except for transitions into the DMN1 state (Figure 2D).
Averaging across all pairwise transitions, individuals with HAU
identified using k-means clustering. Group average centroids are displayed.
for the positive (high-amplitude) and negative (low-amplitude) components
imilarity value. (B) Mean blood oxygen level–dependent (BOLD) activation of
ttention network; DMN, default mode network; FPN, frontoparietal network;
AT, ventral attention network; VIS, visual network.

ce and Neuroimaging - 2024; -:-–- www.sobp.org/BPCNNI 3

http://www.sobp.org/BPCNNI


Figure 2. (A) Group-averaged pairwise transition probabilities observed between the 4 brain states. (B) A trending group effect for heavy alcohol use (HAU)
on pairwise transition probabilities was observed for transitions out of the default mode network (DMN2) and into the visual network (VIS2/1) and for
maintaining the DMN state. (C) Group-averaged pairwise transition energy (TE). (D) Individuals with HAU had larger TE for the majority of potential state
transitions. (E) Overall, there were fewer state transition observed in individuals with HAU. (F) The average TE across all transitions was larger in individuals with
HAU. (G) Average TE was negatively correlated with the number of empirically observed state transitions on an individual level. In panels (B) and (D), t statistics
are visualized to illustrate the direction; however, asterisks still represent p values obtained from analyses of variance. *uncorrected p , .05, **pFDR , .05. a.u.,
arbitrary units; pFDR, false discovery rate–corrected; SUD, substance use disorder.
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also had larger average TE than non-SUD individuals
(Figure 2F). Finally, across the entire group, individuals with
larger average TE had fewer observed state transitions
(r = 20.77, pFDR , .0001) (Figure 2G).

While brain activity in individuals with HAU was less dy-
namic in terms of having fewer observed state transitions, this
is not a measure of brain activity complexity or information
content. To this end, we next computed the MSC of in-
dividuals’ brain state time series (Figure 3A). Individuals with
HAU showed lower MSC than individuals without SUD
(F432 = 10.92, pFDR = .0031) (Figure 3B), and average TE was
negatively correlated with MSC across the 2 groups (r =20.63,
pFDR , .0001) (Figure 3C). MSC and state transitions, 2 related
metrics, were also correlated (r = 0.86, pFDR , .0001)
(Figure S2).

Higher Subcortex-to-FPN TE in HAU

Next, we turned our attention toward TE between canonical
subcortical and FPN states (Figure 4A) to test for asymmetrical
communication patterns between these 2 parts of the brain in
individuals with and without HAU. Due to homogeneous state
definition across individuals (see the Supplemental Methods),
this analysis only revealed differences driven by changes in the
white matter SC network. For all individuals, it required less
energy to transition from the FPN to the subcortex than it did to
transition in the reverse direction (t437 = 2112, pFDR = .0001)
(Figure 4B). There was no group difference in TE between in-
dividuals with HAU and non-SUD individuals for the transition
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
from the FPN to the subcortex (F432 = 1.63, pFDR = .2027)
(Figure 4C). However, individuals with HAU had larger TE for
the transition from subcortex to FPN (F432 = 6.04, pFDR = .0216)
(Figure 4D). Considering the direction of both trends, we per-
formed a post hoc evaluation of HAU’s effect on the TE
asymmetry of these 2 transitions to examine whether in-
dividuals with HAU had a larger delta for transitioning in one
direction (FPN to subcortex) versus the other direction (sub-
cortex to FPN). There was a slight trend suggesting that in-
dividuals with HAU had a larger TE asymmetry (F432 = 2.83,
uncorrected p = .0934).

Simulated Dopamine Dysfunction Results in
Increased Average TE

We deployed an in silico paradigm for studying the impacts of
depleted dopamine receptor availability on TE (Figure 5). We
simulated energies associated with typical dopaminergic
functioning by calculating the average TE for non-SUD in-
dividuals using control weights derived from regional D2 re-
ceptor density maps (derived from PET scans in a separate
population). Then we assessed the impacts of D2 receptor
depletion by recalculating average TE with a series of per-
turbed receptor maps and comparing the average TE from the
perturbed D2 receptor maps to that of the true D2 receptor map
(Figure 5A). We found that depleting the regions with the
highest density of D2 receptors (.95th percentile, which
are mostly regions in the dorsal striatum) by 20% (t307 = 10.4,
pFDR , .0001), 30% (t307 = 20.4, pFDR , .0001), 40% (t307 =
024; -:-–- www.sobp.org/BPCNNI
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Figure 3. (A) Each participant’s partition of brain states obtained from k-means clustering was binarized based on assignment to either visual network
(VIS)–dominated or default mode network (DMN)–dominated states. (B) Lempel-Ziv compressibility was run on the binarized sequences to characterize the
complexity of the brain state sequences (metastate complexity). Individuals with heavy alcohol use (HAU) had significantly lower metastate complexity
compared with individuals without substance use disorder (non-SUD). (C) On an individual level, metastate complexity and average transition energy (TE) were
negatively correlated. a.u., arbitrary units; pFDR, false discovery rate–corrected.

Figure 4. (A) Transition energy between ca-
nonical states of the frontoparietal network
(FPN) and subcortical regions. (B) Across all
participants, it was more difficult to transition
from the subcortex to the FPN (up the hierarchy)
than it was to transition in the reverse direction
(down the hierarchy). (C) There was no group
effect on transitioning from the FPN to the
subcortical network. (D) Individuals with heavy
alcohol use (HAU) required more energy to
transition from the subcortex to the FPN than
those without a substance use disorder (non-
SUD). a.u., arbitrary units; pFDR, false discovery
rate–corrected; SUB, subcortical structures.
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Figure 5. D2 receptor (D2R) depletion simulation paradigm. (A) The original positron emission tomography–derived D2R map (top) ordered by the average
density of D2R availability per region (20 randomly selected regions shown for illustration purposes). To simulate dopamine receptor depletion or dysfunction,
regions above the 95th percentile of D2R density, mostly in the dorsal striatum, are depleted from their original values by 20%, 30%, 40%, and 50%. Each of
these maps was then used as control weights for calculating average transition energy (TE) for individuals without substance use disorder, and the results of
each depleted map were compared against those from the original map. (B) Each depleted map resulted in an increase in average TE compared with the
original map. **pFDR , .0001.
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21.5, pFDR , .0001), and 50% (t307 = 8.5, pFDR , .0001)
resulted in significant TE increases compared with the original,
unperturbed map (Figure 5B).

Replications

We replicated our results in numerous ways. First, we repeated
k-means clustering with k = 2 to 12 clusters and assessed
HAU’s impact on state transition count and average TE using
each resulting partition. We found that individuals with HAU
had lower state transitions and higher average TE than non-
SUD individuals for each value of k tested (Figure S4). We
also successfully replicated our dopamine dysfunction model
using the partitions from k = 3 and k = 5 (Figure S5). We
replicated our findings of increased subcortex-to-FPN TE in
HAU using continuous time-averaged states derived from fMRI
(33) in place of the binary states studied in the main analysis
(Figure S6). Finally, we reanalyzed state transitions, average
TE, MSC, FPN-to-subcortex TE, and subcortex-to-FPN TE in 3
additional groups of individuals: 1) 100 individuals with HAU
who did not show disordered use of any other substances
(HAU-only) (Figure S7), 2) 53 individuals who had marijuana
(MJ) abuse/dependence and did not show disordered use of
any other substances (MJ-only) (Figure S8), and 3) 26 in-
dividuals who had both HAU and marijuana abuse/depen-
dence and did not show disordered use of any other substance
(HAU1MJ) (Figure S9). For the HAU-only group, we found that
all results were replicated, except for the finding of increased
TE from the subcortex to the FPN, which only showed a trend.
We found that none of the functionally derived results (state
transitions, average TE, and MSC) were replicated in the MJ-
only group. There was a trend for changes in the structure
only–derived results (FPN-to-subcortex TE and subcortex-to-
6 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
FPN TE) in the same direction as was observed in the main
text. For the final group, HAU1MJ, we found that the func-
tionally derived results did not replicate, but structure-based
differences were evident by large effect sizes (FPN-to-sub-
cortex, F339 = 7.97, pFDR = .005; subcortex-to-FPN, F339 =
14.13, pFDR = .0003).

DISCUSSION

We applied NCT to understand how current HAU altered both
the structure and function of the human brain in 438 in-
dividuals. Using individuals’ SC networks from dMRI and
functional states from fMRI data, we found that TE in the brain
was higher in individuals who had current HAU than those with
minimal use of substances (non-SUD) (Figure 2D, F). Higher TE
in HAU occurred alongside a concomitant decrease in the
number of state transitions (Figure 2E) and MSC measured
with resting-state fMRI (Figure 3B). Additionally, both the
number of state transitions and MSC were strongly anti-
correlated with average TE across all participants (Figures 2G
and 3C). Using canonical states implicated in substance use,
we found that individuals with HAU required more energy to
transition from the subcortex to the FPN (Figure 4D). Finally,
we found that increasing the amount of dopamine dysfunction
(by shifting control away from dorsal striatum regions with high
D2 receptor expression) increased TE (Figure 5), mirroring the
empirical results observed in HAU.

NCT is a computational framework that enables the quan-
tification of state TE in the brain (14). Transitions are modeled
as a diffusion of initial states through the brain’s structural
connectome, with energy being injected at each node (brain
region) to control the trajectory toward the desired final state.
The integration of these inputs over the length of the trajectory
024; -:-–- www.sobp.org/BPCNNI
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comprises the control energy, which we refer to simply as TE.
Here, we calculated the TE between 4 commonly recurring
patterns of brain activity in the resting-state fMRI time series of
each individual (Figure 1). Consistent with our hypothesis, in-
dividuals in the HAU group had larger TE than non-SUD in-
dividuals (Figure 2D, F). In addition, state transitions and MSC
were decreased in individuals with HAU compared with non-
SUD individuals. These findings suggest that brain dynamics
under substance use, specifically alcohol, reflect a system
entrenched in a state of low complexity and decreased infor-
mation processing (27).

Brain entropy, which was assessed here via MSC, has been
shown to index different states of consciousness as well as
various brain disorders (24,27,30). Brain entropy is affected by
the acute and/or chronic administration of various substances
including alcohol (34), caffeine (35), nicotine (36), and cocaine
(37), as well as the psychedelics LSD, psilocybin, and DMT
(30,38–40). Sevel et al. (34) found that the acute administration of
alcohol in healthy drinkers decreased brain entropy, a result that
matches the subacute effects observed in chronic heavy users of
alcohol in the current study. Given that our energy and entropy
results mirrored one another, we formally tested their association
by correlating average TEandMSCacross individuals (Figure 3C)
and found a significant negative correlation. This relationship is
consistent with previous studies showing an inverse relationship
between TE and entropy that wasmodulated by disease (20) and
pharmacological intervention (24,25).

Higher TE and lower dynamics that either precede or are a
result of HAU likely indicate decreased neural flexibility (41–43)
that may reflect decreased cognitive flexibility in disordered
alcohol use (44–47), as previous studies have found. In addi-
tion, decreased cognitive and cortical arousal in HAU (48) may
lead to increased fMRI signal amplitude (49) that influences
average TE. The acute administration of psychedelic com-
pounds increases cognitive and cortical arousal (50) and de-
creases TE (24,25). The classic psychedelic psilocybin, in
addition to acutely decreasing TE in healthy volunteers (24),
also increases neural and cognitive flexibility 4 weeks post-
dosing in individuals with major depressive disorder (51) and
enhances top-down response to alcohol and emotional cues 2
days postdosing in AUD (52). Psilocybin has demonstrated
promise in treating AUD, with the most robust evidence
demonstrated by a significant reduction in alcohol consump-
tion over a 32-week period in a randomized clinical trial of 95
participants with AUD and an active placebo control (53).
Taken together, these findings shed light on processes linking
decreased cognitive and neural arousal and flexibility in HAU
with our current findings of increased TE and suggest potential
treatment targets.

Previous work suggests that NCT can capture structural
differences relevant for executive functioning and development
(22,54). Cui et al. (54) demonstrated that the amount of energy
required to activate the FPN decreases throughout develop-
ment and also that individuals who required less energy to
activate the FPN had higher executive functioning. Here, we
studied the bidirectional transitions between the subcortex
and the FPN (Figure 4) due to the known involvement of
dopaminergic mesocorticolimbic signaling pathways and
frontosubcortical circuits in addiction (10,55–57). We found
that individuals with HAU required more energy to transition
Biological Psychiatry: Cognitive Neuroscien
from the subcortex to the FPN than non-SUD individuals
(Figure 4D). This finding suggests that the coarse-grained
structural connectome topology of individuals with HAU is
organized in a way that limits the natural diffusion of informa-
tion from subcortical structures to the FPN. This possibly re-
lates to the atrophy of regions belonging to corticostriatal-
limbic circuits observed in HAU (58,59) or increased difficulty
in activating the FPN, which could be associated with the
decreased executive functioning found in HAU (60).

Individuals with HAU show reduced levels of D2 receptors in
subcortical limbic and striatal areas, which is also where D2

receptors are most dominantly expressed (4,61,62). We
developed an in silico D2 receptor depletion model to test the
correspondence between spatial patterns of aberrant dopa-
minergic signaling and our observation of increased TE in the
HAU group. We recalculated average TE in non-SUD in-
dividuals using 5 different sets of control weights corre-
sponding to increasing amounts of disruption to typical D2

receptor signaling. Importantly, by using rank-normalized
control weights, our paradigm is sensitive to perturbations in
spatial pattern alone and not affected by changes in distribu-
tion characteristics. We found that reducing the amount of
control given to the regions most richly expressed in D2 re-
ceptors increased TE (Figure 5). This suggests a potential link
between decreased D2 receptor functioning and larger TE in
HAU. Indeed, prior work has demonstrated increased TE in
individuals administered a D2 antagonist and negative corre-
lations between genetically estimated D2 receptor densities
and global TE (17).

To understand whether the current findings were specific to
HAU or would be found in disordered use of other substances
as well, we repeated our main analyses in 2 separate groups of
participants: those with only HAU (HAU-only) and those with
only marijuana abuse/dependence (MJ-only, the next largest
disordered substance-using group behind HAU). In the current
study, we found that group-level impact on the fMRI-derived
metrics (state transitions, average TE, and MSC) was consis-
tent in the HAU-only group (Figure S7) but not in the MJ-only
group (Figure S8). Metrics affected exclusively by the struc-
tural connectome topology (subcortex-to-FPN TE) only
showed trends consistent with the main text for each group.
Given that the structure-based results did not replicate in the
HAU-only group or the MJ-only group, we were curious about
the subset of individuals in the main analysis who were both
heavy drinkers and marijuana users (HAU1MJ). In this case,
we found no differences in the functionally derived measures
between this group and non-SUD control group. However, the
structure-based measures were significantly different in this
group at a level above what is observed in any of the other
groups (Figure S9). Taken together, these 3 replications sug-
gest that the association of HAU with our functionally derived
metrics may be unique compared with other substances while
the structurally derived metrics seem to be moderately asso-
ciated with both heavy alcohol and marijuana use and are
especially associated with heavy use of more than one sub-
stance (alcohol and marijuana). Further work is warranted to
elucidate the differential impacts of substance use and multi-
substance use on human brain structure and function.

While this analysis utilizes state-of-the-art single-site data
acquired from a large number of participants, these findings
ce and Neuroimaging - 2024; -:-–- www.sobp.org/BPCNNI 7
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still warrant validation in external datasets of similar scope and
quality. While we controlled for sex, age, and sex-by-age in-
teractions, we did not seek to formally evaluate these re-
lationships; we will do so in future work. Due to the limitations
of the available data, we were not able to take into account
important factors for substance use such as the amount of
time since the most recent drink or the duration of alcohol use.

We combined dMRI, fMRI, and PET to perform a whole-brain
evaluation of the impacts of HAU on human brain structure and
function. We found that functional landscapes in HAU were
reflective of less dynamic and complex activity, with greater
barriers to transition between brain states compared with in-
dividuals without an SUD. We also found higher energetic de-
mands to propagate signals through the structural connectome
from the subcortex to the FPN in HAU and, finally, evidence that
dopamine receptor dysfunction could be a contributing mech-
anism to this increased energetic demand for state transitions in
HAU. This study demonstrates the ability of this multimodal
NCT framework to uncover shifts in brain dynamics and
potentially uncover neurobiological mechanisms of these shifts.
Understanding the latter is key if we are to better diagnose,
prevent, track, and treat HAU so that we can help reduce the
individual and societal burden of this debilitating disorder.
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